Indian Statistical Institute, Bangalore

B. Math (Hons.) First Year

First Semester - Analysis I
Semester Exam
Date: 15th November 2023
Maximum marks: 50
Duration: 3 hours
Section 1: Answer any four and each question carries 6 marks

1. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ converge to a and b respectively, prove that $a_{n}-b_{n} \rightarrow a-b$ and $\max \left\{a_{n}, b_{n}\right\} \rightarrow \max \{a, b\}$.
2. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be sequences of non-negative reals. If $\sum a_{n}$ converges and $\sum b_{n}$ diverges, prove that $\sum \frac{\sqrt{a_{n}}}{n}$ converges and $\sum \frac{b_{n}}{1+b_{n}}$ diverges.
3. Let A be a nonempty subset of \mathbb{R}. Define f on \mathbb{R} by $f(x)=\inf _{a \in A}|x-a|$. Prove that f is continuous on \mathbb{R}.
4. Prove that any continous function on $[a, b]$ with $(a<b)$ is uniformly continuous.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be continous and differentiable at $x \in[a, b]$. Let $g:[c, d] \rightarrow \mathbb{R}$ be a function such that $f([a, b]) \subset[c, d]$ and differentiable at $f(x)$. Then $h(t)=$ $g(f(t))$ is differentiable at x.
6. Suppose f is differentiable on \mathbb{R} such that f^{\prime} is uniformly continuous on \mathbb{R} and $\lim _{x \rightarrow \infty} f(x)=0$. Prove that $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$.

Section 2: Answer any two

1. (a) Prove that $\sum \frac{1}{n!}$ converges and $\lim (1+1 / n)^{n}=\sum \frac{1}{n!}$ (Marks: 7).
(b) Let $[x]$ be the largest integer less than or equal to x. Find points of continuity of $f(x)=[x]$ and $g(x)=[3 x]$ on $(0, \infty)$. Justify your answer (Marks: 6).
2. (a) State and prove intermediate value property for continuous functions on intervals (Marks: 7).
(b) Let f and g be bounded and uniformly continous. Prove that $f g$ is uniformly continuous (Marks: 6).
3. (a) State and prove Taylor's Theorem (Marks: 7).
(b) Let $f:(-1,1) \rightarrow \mathbb{R}$ be differentiable at 0 . If $-1<a_{n}<0<b_{n}<1$ with $b_{n}-a_{n} \rightarrow 0$, prove that $\frac{f\left(b_{n}\right)-f\left(a_{n}\right)}{b_{n}-a_{n}} \rightarrow f^{\prime}(0)$ (Marks: 6).
